Hyper-Laplacian Regularized Multi-View Subspace Clustering With a New Weighted Tensor Nuclear Norm

نویسندگان

چکیده

In this paper, we present a hyper-Laplacian regularized method WHLR-MSC with new weighted tensor nuclear norm for multi-view subspace clustering. Specifically, firstly stack the representation matrices of different views into tensor, which neatly captures higher-order correlations between views. Secondly, in order to make all singular values have contributions based on tensor-Singular Value Decomposition (t-SVD), use constrain constructed can obtain class discrimination information sample distribution more accurately. Third, from geometric point view, data are usually sampled low-dimensional manifold embedded high-dimensional ambient space, model uses graph regularization capture local structure data. An effective algorithm solving optimization problem is proposed. Extensive experiments five benchmark image datasets show effectiveness our proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-View Subspace Clustering via Relaxed L1-Norm of Tensor Multi-Rank

In this paper, we address the multi-view subspace clustering problem. Our method utilize the circulant algebra for tensor, which is constructed by stacking the subspace representation matrices of different views and then shifting, to explore the high order correlations underlying multi-view data. By introducing a recently proposed tensor factorization, namely tensor-Singular Value Decomposition...

متن کامل

Laplacian regularized low rank subspace clustering

The problem of fitting a union of subspaces to a collection of data points drawn from multiple subspaces is considered in this paper. In the traditional low rank representation model, the dictionary used to represent the data points is chosen as the data points themselves and thus the dictionary is corrupted with noise. This problem is solved in the low rank subspace clustering model which deco...

متن کامل

Robust auto-weighted multi-view subspace clustering with common subspace representation matrix

In many computer vision and machine learning applications, the data sets distribute on certain low-dimensional subspaces. Subspace clustering is a powerful technology to find the underlying subspaces and cluster data points correctly. However, traditional subspace clustering methods can only be applied on data from one source, and how to extend these methods and enable the extensions to combine...

متن کامل

Safe Subspace Screening for Nuclear Norm Regularized Least Squares Problems

Nuclear norm regularization has been shown very promising for pursing a low rank matrix solution in various machine learning problems. Many efforts have been devoted to develop efficient algorithms for solving the optimization problem in nuclear norm regularization. Solving it for large-scale matrix variables, however, is still a challenging task since the complexity grows fast with the size of...

متن کامل

Weighted Multi-view Clustering with Feature Selection

In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As different views are different representations of the same set of instances, we can simultaneously use information from multiple views to improve the clustering results generated by the limited information from a single view. Previous studies main...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3107673